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Abstract. Rare events pose a problem: is an observed chain of radioactive decays that of the background,
or are they genetically linked? The paper suggests an approach for the problem solution, based on for-
malization of the background concept. This approach is an inevitable alternative to other methods, which
require the a priori information about the linked decays, in a situation when such information is absent,
but, instead, the background information is available, e.g., from the calibration measurements. The method
is illustrated by the analysis of data registered in the experiment on the synthesis of the element 114 as
one of practically important examples of the analysis of rare events.

The logic and the apparatus of nuclear experiments
getting ever more complicated, the situation arises when
the result of such experiments is the observation of one
single event, which admits a multiple interpretation, and
first of all, as a random signal combination.

The direct use of statistical methods in this case is
either impossible, or inappropriate: a combination with
methods of probability theory is needed. Of course, the
mathematical analysis in such situation loses the reliabil-
ity and safety of the classical statistics; but it allows us to
extract the optimum volume of information from the data
of a small size which is possible in this case at all.

The observed event is in the best case a sequence of
some subevents, or otherwise, signals, which cannot be
identified even formally in the sense that they almost all
are results of some radioactive decays, statistically inde-
pendent of each other, and it is very difficult to decide
from what decays they come—from those of interest or
some others.

So both background signals and those of genetically
linked decays of interest are random, statistically inde-
pendent and formally undistinguishable. The only chance
to separate them is given by differences of time character-
istics of their combinations, or, speaking more generally,
by the differences of probabilistic characteristics (means,
variances, frequencies, etc.) of these combinations.

Bearing this in mind, one can build two approaches to
tackle with the problem of signal identification:

– Formalize the concept of a background signal combi-
nation (BSC) and test whether the signal sequence an-
alyzed does fit in this concept or not.

– Formalize the concept of a linked decay signal combi-
nation (LDSC) and test whether the signal sequence
analyzed does fit in this concept or not.
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The authors of [1] (Dr. K.H. Schmidt and his col-
leagues) have preferred the latter approach (correlation
analysis in their terms). Their method is widely used now,
but its success strongly depends on the volume and quality
of the a priori information about the qualitative structure
of the event (list of classes in terms of [1]) and the half-
lives of its constituents.

In cases of extremely indefinite and poor experimen-
tal outcomes we do not know the structure of the decay
chain a priori ; neither the reliable information about the
half-lives of members of this chain is available. In this sit-
uation the first approach is more attractive: see whether
the signal group analyzed corresponds statistically to the
pattern of the BSC or not; if not then the next analysis
comes trying to find the informative pattern for the event
interpretation. The most important advantage of this ap-
proach is the fact that for building the BSC pattern we
can use the objective sources of information—data of the
background calibration measurement, which, in addition,
are not affected by poor statistics. The first approach is
not competitive against the second one; rather, it is a ne-
cessity to which one resorts when there is a complete ab-
sence of reliable information about the characteristics of
the physical process.

Below some mathematical tools needed for further
analysis are described.

1 Functions of probability distribution for the
radioactive decay

The classical function of probability distribution for an
event (the radioactive decay) at a time moment t is:
P (t) = 1 − exp(−lt), where l = ln(2)/T , and T = the
half-life of the nucleus. The density of this probability is
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f(t) = l · exp(−lt). With the help of P (t) and f(t) all the
other distributions can be obtained.

So the function of the probability distribution for the
daugther nucleus is

P12(t) =
∫ t

0

f1(τ)P2(t− τ) dτ

and substituting the concrete expressions in P2(t) and
f1(t) we get

P12(t) =



1− exp(−l1t)− l1/(l1 − l2)

·(exp(−l2t)− exp(−l1t)), if l2 �= l1,

1− exp(−l1t)− l1t · exp(−l2t), if l2 = l1.

Similarly, the same functions are built for the successors
of the consequent decay of the original nucleus:

P123(t) =
∫ t

0

f1(τ)P23(t− τ) dτ, (1)

P1234(t) =
∫ t

0

f12(τ)P34(t− τ) dτ, (2)

P12345(t) =
∫ t

0

f123(τ)P45(t− τ) dτ, (3)

where 1, 2, 3, 4, 5 denote mother, daugther, grand daugther
etc., respectively. The computational procedure can
use (1), (2), (3) directly in general form, since the con-
crete formulae are too bulky due to many combinations of
coinciding and not coinciding half-lives.

2 Function of probability distribution for a
quadratic form

Let the following quadratic form

Sn =
n∑

i=1

x2
i (4)

be given, where normally distributed random quantities xi

have zero expectation, unit variance, and the neighbouring
pairs xi, xi+1 are correlated with the correlation coefficient
−0.5. What is the function of probability distribution of
Sn? One of the widely spread errors in the practice of data
analysis is that this function is supposed to have the χ2

n

distribution. In fact, it has not.
From the mathematical statistics [2] it is known that

the quadratic form Qijxixj , i, j = 1, ..., n, where Q is the
inverse normal covariance matrix of xi, has the χ2

n dis-
tribution, irrespective of whether the xi are correlated or
not; therefore, if we had taken the inverse matrix of

cij =




1 −0.5 0 · · · 0
−0.5 1 −0.5 · · · 0

· · ·
0 0 · · · 1 −0.5
0 0 · · · −0.5 1


 (5)

and built a quadratic form

Ŝn =
n∑

i,j=1

c−1
ij xixj ,

it would have the χ2
n distribution. But the inversion of a

matrix like (5) is rather complicated; besides, the proba-
bility of large deviations of a χ2-distributed random quan-
tity is substantially larger than that of Sn (e.g., for n = 4
about 0.07 and 0.045, respectively) and the decision mak-
ing procedure based on the use of Ŝn loses part of its
efficiency specifically in this case.

Thus, preferable is a method based on the direct
use of Sn. The probability distribution function and its
density for (4) can be easily calculated numerically. One
can show, that the expectation of (4) is equal to n, and
the variance to 3n− 1. Below a table of values of P (t) for
n = 4 is given.

P .05 .10 .15 .20 .25 .30 .35 .40 .45 .50
S4 .6 .9 1.1 1.4 1.6 1.9 2.2 2.5 2.8 3.1
P .55 .60 .65 .70 .75 .80 .85 .90 .95
S4 3.4 3.8 4.2 4.7 5.3 6.0 6.9 8.2 10.3

Numbers in each upper row are probabilities P with
the step 0.05, and in the lower one the corresponding val-
ues of S4.

With the help of such table (certainly, more detailed)
we can construct the 67% confidence interval of S4 as
n± σ; corrected for the asymmetry it is: (1.8–10.8).

3 The formalism of stochastic Poisson time
processes

These are the time functions K(t1, t2)—number of ran-
dom events, occurred during a time interval (t1, t2) with a
probability Qk(t1, t2) and having the following properties:

1. stationarity: Qk(t1, t2) = Qk(t2 − t1) for arbitrary
t1, t2;

2. Qk(t1, t2) independence of the event prehistory:
Qk(t1, t2|C) = Qk(t1, t2), where C means events which
happened before t1;

3. rareness of events: Qk>1(δt) = o(δt).

These properties allow us to write simply K(t) and Qk(t)
bearing in mind that t means the duration of the time
interval considered.

The Poisson processes play an important role in ana-
lytical modelling of the stochastic time event background
in scientific and technical applications because random
events very often satisfy the above-numbered require-
ments. They disable the need to use the computer sim-
ulation to get the estimates of the random background
characteristics.

The function of probability distribution of K(t) is

Qk(t) =
(lt)k

k!
exp(−lt), (6)



V.B. Zlokazov: Statistical analysis of rare events—synthesis of the element 114 83

where l = parameter of the Poisson distribution, t = time,
and Qk = probability that during a time interval (0, t) k
events will be registered.

The quantity lt is the expectation and at the same
time the variance of K(t) at a moment t.

Another independent characteristic of the random
event sequence is T—time between the two subsequent
events. As known [2], it is subject to the exponential dis-
tribution

P (T < t) = 1− exp(−lt), (7)

where l is the same parameter as in (6). The expectation
Tm and the variance Tv are

Tm =
1
l
, Tv =

1
l2
. (8)

The estimates of l, obtained from (8) and from (6) are
almost uncorrelated, and, therefore, lt and T can serve
as independent statistical characteristics of the data ana-
lyzed.

On the basis of (7), we can determine Tmax—the aver-
age maximum T , and Tmin—the average minimal T . Mak-
ing use of the formula [3] for the expectation of the maxi-
mum of n random quantities xi, i = 1, 2, . . . , n, subjected
to a distribution F (x), x ∈ (a, b):

ÊMax(xi) =
∫ b

a

nxF (x)n−1 dF
dx

dx,

and the corresponding formula for the minimum, we get

Tmax =
∫ ∞

0

tnl
(
1− exp(−lt)

)n−1 exp(−lt) dt,

Tmin =
∫ ∞

0

tnl exp(−lnt) dt, (9)

where n = the number of items in the event sequence.
The formal analysis of both BSC and LDSC data does

not show any qualitative difference between them; both
satisfy the distributions (6) and (7). But with different
parameters l! And this is the only chance to distinguish a
BSC data from a LDSC one:

A BSC is distinguishable from a LDSC if the confi-
dence intervals of their parameters l do not overlap.

4 Application to the element 114

As example, let us consider the analysis of data obtained
in the experiment on the synthesis of superheavy nuclei in
the 48Ca + 244Pu reaction [4], in particular, of the 114th
element. The data of interest (in a group of others, which
are uninteresting) is a chain of registered signals, starting
with the implantation of the recoil nucleus, followed by 3
alpha-decays, and ending with the spontaneous fission; all
the signals were observed in the same strip of the detector.
We can summarize these data in the following way.

The registered locations of the decaying nucleus in the
position-sensitive detector are as follows [4]:
xevr = 16.5mm—position of the implantation signal.
xa1 = 15.6mm—position of the alpha-1 signal.
xa2 = 16.5mm—position of the alpha-2 signal.
xa3 = 17.0mm—position of the alpha-3 signal.
xsf = 17.1mm—position of the spontaneous fission signal.
The span of these positions is about 1.6mm.
Then we have “resolutions”—FWHMs of the distributions
of signal differences, which, on assumption of the normal
distribution of these differences, can be transformed into
the usual sigmas:
EVR-alpha: resolution = 1.4mm; sigevr-α = 0.59mm;
alpha-alpha: resolution = 1.0mm; sigα-α = 0.42mm;
EVR-SF: resolution = 1.2mm; sigevr-sf = 0.51mm;
The following times were registered between the
spontaneous-fission signal and the nearest foregoing im-
plantation signal appearance:
t of implantation signal = 0;
t of alpha-1 signal = 0.5min;
t of alpha-2 signal = 15.9min;
t of alpha-3 signal = 17.5min;
t of spontaneous fission signal = 34.0min.
To complete this dataset, let us adduce the results of cali-
bration measurement of chance signals of recoil implanta-
tion and alpha-particles with energy 8.5–10 in a detector
strip for a position-correlation window 1.6mm:
implantation = 1.3 per hour, alpha-particle = 1 per hour.

Now we start the analysis of all these data. We shall
go over a set of possible interpretations of this data pro-
posed by the physicists and consider the following prob-
lems: within the framework of these interpretations esti-
mate the formal probabilities of the observed signal con-
figuration and some of its statistical characteristics.

4.1 Interpretation 1: “events are random, and the
spontaneous fission has no relation to the reaction
48Ca +244 Pu”

The above-mentioned time events represent a typical time
process of the Poisson type (6) and we can use here its
technique. Let us derive the probability of the events: one
imitator of the implantation signal 34minutes before the
spontaneous fission, and 3 imitators of alpha-particles be-
tween them.

We estimate l in (6) for implantation and alpha-
particle imitators on the basis of calibration data as fol-
lows:

li · 60 = 1.3; lα · 60 = 1.

Solving these equations, we get li = 1.3
60 ; lα = 1

60 .
Substituting in (6), we get the probability of 3 alpha-

particles

Q3(34) =
(34/60)3

3!
exp

(
− 34

60

)
,
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and the probability of one implantation 34minutes before
the spontaneous fission:

Pτ (34) = 34 · 1.3
60

exp
(
−

(
34 · 1.3

60

))
.

Thus, we have the probability Ps for this data interpreta-
tion

Ps = Q3 · Pτ ∼ 0.00607.

This probability does not give yet a notion about the like-
lihood of the considered signal interpretation—to make
a statistically correct decision it is necessary to compare
it with the probabilities of other random signal combina-
tions. We have

Imp. Alpha Probability
1 0 0.20010
1 1 0.11339
1 2 0.03213
1 4 0.00086
2 1 0.04176
2 0 0.07370

Here Imp = number of signals for the implantation, Al-
pha = for the number of alpha-particles, Probability =
probability of such combination. It is seen that the largest
is the probability to observe the combinations 1 + 0 and
1+1, but the probability of the combination 1+3 is really
small as compared with them. In other words, the data ob-
viously contradicts the hypothesis about the background
character of signal emergence.

The information about the time characteristics of the
sequence analyzed complies with this conclusion. Calcu-
lating Tm (8) for both the background and the chain of
interest, we get

background: Tm = 26.09min,
tested sequence: Tm = 8.5± 3.7min.

The first Tm is obtained from the calibration data and its
accuracy can be made very high. One can see that both
Tm differ very strongly from one another.

In addition to this, let us calculate the average Tmax

and Tmin for both the data on the basis of (9): (n = 4)

background: Tmax =
25
12

· Tm = 54.4,

Tmin =
1
4
Tm = 6.5,

tested sequence: Tmax =
25
12

· Tm = 17.7,

Tmin =
1
4
Tm = 2.1.

To confirm the above conclusion, we can make use of the
spatial difference between a BSC and a LDSC: the succes-
sors of a decay chain remain at the same place, whereas
random events are scattered on the surface detector ran-
domly.

Let a hypothesis be tested: all the signals arise as a
result of a decay of a parent nucleus, which is located at
a fixed position in the detector strip.

The statistical test of this hypothesis can be carried
out by two methods.

Method 1. Let us construct an expression

S =
(
xevr − xa1
sigevr-α

)2

+
(
xa1− xa2
sigα-α

)2

+
(
xa2− xa3
sigα-α

)2

+
(
xevr − xsf

sigevr-sf

)2

. (10)

Substituting the corresponding values of variables
into (10), we get: S4 = 9.56. One sees at once that it
is covered by the 67% confidence interval of the quantity
S4: (1.8–10.8).

Method 2. The analysis of the differences is less efficient
than the analysis of their constituents, since the variance
of the former is always greater than that of the latter.
Besides, these variances are obtained from the calibration
reactions, and can differ from the true variances of differ-
ence signals for the reaction considered.

Therefore, for a greater reliability we can use the clas-
sical approach of the statistics: analysis of the constituents
of these differences. Let us find the sample mean and the
variance for the signals of the nucleus position. We have
for the mean

pos =
(16.5 + 15.6 + 16.5 + 17.0 + 17.1)

5
= 16.54.

For the sample variance we apply the usual formula:

var =
n∑

i=1

(xi − pos)2

n− 1
.

After the necessary calculations we obtain var = 0.35,
whence we find the sigma: σ = 0.59.

Let us consider the expression

Q =
5∑

i=1

(
xi

σ

)2

, (11)

where xi = difference between i-th signal and pos.
If our hypothesis holds then under very common as-

sumptions each quotient and their sum will have asymp-
totically the Student’s and χ2

3 distributions, respectively.
Substituting our data in Q, we get Q = 4.0.

The expectation of this quantity is ÊQ = m = 3, the
variance V̂ Q = 6 and σ = 2.45. The 67% confidence inter-
val calculated as m± σ and corrected for the asymmetry
is equal to (1.30, 7.50); our Q gets into it. Thus, both
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methods find out that the data does not contradict the
hypothesis that events are a LDSC.
Remark. The variance of the difference is twice greater
than the variance of its constituents; since the sigmas of
the differences are smaller than 0.59, it points out that
real difference variances are larger than the given above.
So, the real value of (10) is even smaller than 9.56.

4.2 Interpretation 2: “data is the result of the decay
of element-114 recoil”

The main conclusion being made: “the signals most prob-
ably are not a BSC”, we can further try to test several
hypotheses about the possible physical meaning of this
sequence. We start with the above one.

If this interpretation is valid the data is a sequence
of the events: implantation of the recoil, 3 consequent
alpha-decays and finally the spontaneous fission, and the
quantitative analysis should consist in testing the corre-
spondence of the observed energies and half-lives of the
alpha-particles to calculations, given, e.g., in [5].

We do not know the half-lives of the nuclei produced in
the decay, but we have a priori estimates of the intervals
containing these half-lives, and we can set the problem as
follows: determine the maximum and minimum probabil-
ity of the decay of grand daugther P1234 (2) within the
time range from the signal of recoil implantation to the
signal of the spontaneous fission over the direct product
of confidence intervals for the half-lives.

The calculation of the maximum and minimum of (2)
over the region

0.05 ≤ T1 ≤ 0.5, 30 ≤ T2 ≤ 300,

2 ≤ T3 ≤ 20, 7 ≤ T4 ≤ 27,

in the time interval (0, 34min) with account of the regis-
tration efficiency, equal to 0.87, gave the following results:

Pmin = 0.0083, Pmax = 0.3364.

4.3 Interpretation 3: “the chain is decay of the
element 112, and one alpha-particle is imitator”

Assuming that the recoil nucleus is the element 112—by
(α, 3n)-evaporation channel—and the first alpha-particle
is imitator, the problem is: determine the maximum and
minimum probability of the decay of the grand daughter
P in the time interval from implantation signal to that of
the spontaneous fission on the direct product of confidence
intervals for the half-lives.

The maximum and minimum of (1) over the region

30 ≤ T2 ≤ 300, 2 ≤ T3 ≤ 20, 7 ≤ T4 ≤ 27,

in the time interval (0, 34min) gave the following results:

P̂min = 0.0293, P̂max = 0.4934.

Multiplying these probability by the probability of the
imitation of one alpha-particle in the time interval (0,
34min) Q1(34) = 34

60 exp(− 34
60 ), and correcting them for

the registration efficiency, we finally get

Pmin = 0.0032, Pmax = 0.1273.

4.4 Interpretation 4: “the chain is the decay of a
product of the transfer reaction between the nuclei of
the projectile and the target, and alpha-particles (all
or part) are imitators”

This case is similar to the previous one, but the probabil-
ities of the event configurations and the genetic connec-
tion between them will be smaller, and the more alpha-
particles are suppposed to be imitators, the smaller. For
instance, let us consider the case: 1 alpha-particle is true,
the other 2 are imitators. Suppose that the half-life of the
mother-nucleus is contained in the interval (1–100min).
Omitting the details of the calculations (they are similar
to the above ones), we get

Pmin = 0.0089, Pmax = 0.1521.

The analysis of the results. We have

Interpretation Max. Min.
number probability probability

2 0.3364 0.0083
3 0.1273 0.0032
4 0.1521 0.0083

One can see that the comparison of the formal proba-
bilities to observe the signal configuration given does not
contradict the preference for the interpretation 2 made
by the authors of [4]. And this non-contradiction substan-
tially increases if we attach the physical probabilities, by
which the formal probabilities should be multiplied:
1. The cross-section of the channel (α, 3n) for interpreta-

tion 3 is several orders smaller than that of the channel
(3n) for interpretation 2;

2. The probabilities to observe the energies of Alpha-
particles given in [4] and possible half-lives for inter-
pretation 4 are very small as compared with the prob-
abilities for interpretation 2.
Unfortunately, the numerical evaluation of the physical

probabilities is impossible, since the calculations like [5] do
not contain confidence intervals for the possible energies
of the alpha-decay and half-lives.

Still, we can make here the following

5 Conclusion

The performed analysis is an illustration of rare event
treatment, which gives a rather reliable means to distin-
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guish a background decay sequence from that of geneti-
cally linked decays under lack of information about the
half-lives of constituents of the decaying chain when the
method of [1] is not applicable.

This work has been performed at the request of Prof. Yu.Ts.
Oganessian. The author thanks him and Drs. V.K. Utyonkov
and A.G. Demin for the helpful discussions of the physical
aspects of the problem.
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